TECHNOLOGY SUMMARY
The falling particle receiver uses sand-like particles that fall through a beam of highly concentrated sunlight focused by an array of mirrors. The particles are heated to temperatures over 700 °C, stored, and used to generate electricity in a power cycle or to create process heat.
Primary Application Area: Energy, Efficiency
Technology Development Status: Prototype
FIGURES OF MERIT
Value Proposition: Compared to other renewable technologies like solar photovoltaics and wind turbines, concentrating solar power using particles provides energy storage to dispatch electricity on-demand, even when the sun is not shining. Also, unlike conventional receivers for concentrating solar power that employ molten nitrate salts, particle receivers heat particles directly, enabling higher solar concentrations and consequently higher temperatures, higher efficiencies, and lower costs. For example, current conventional solar receivers use molten salt, which decomposes at less than 600 °C, thus limiting the operating temperature and efficiency of the power cycle. Particles also can be operated over a much larger temperature range without the risk of freezing at low temperatures or decomposing at high temperatures. Recent on-sun tests with Sandia’s 1 MWt falling particle receiver have achieved peak particle temperatures over 900 °C and thermal receiver efficiencies approaching 80% at 1000 suns with particle mass flow rates of 1 – 7 kg/s. Efficiencies of ~90% are expected for larger-scale (>100 MWt).
SHOWCASE SUMMARY
Organization Type: Academic/Gov Lab
Showcase Booth #: 401
Website: http://www.sandia.gov/
GOVT/EXTERNAL FUNDING SOURCES
Vetted Programs/Awards: 2016 R&D 100 Award Winner