Large-scale 2D Materials: Graphene and Beyond

J.A. Robinson
The Pennsylvania University,
United States

Keywords: 2D materials, graphene


The last decade has seen nearly exponential growth in the science and technology of two-dimensional materials. Beyond graphene, there is a huge variety of layered materials that range in properties from insulating to superconducting. Furthermore, heterogeneous stacking of 2D materials also allows for additional “dimensionality” for band structure engineering. In this talk, I will discuss recent breakthroughs in two-dimensional atomic layer synthesis and properties, including novel 2D heterostructures and novel 2D nitrides. Our recent works include development of an understanding of substrate impact on 2D layer growth and how we can tune the substrate to acheive near-single crystal 2D materials over large areas. I will also discuss doping of 2D materials with magentic elements, selective area synthesis of 2D materials, and the first demonstration of 2D gallium nitride (2D-GaN). Our work and the work of our collaborators has lead to a better understanding of how substrate not only impacts 2D crystal quality, but also doping efficiency in 2D materials, and stabalization of nitrides at their quantum limit.