Fluorescence blinking as an output signal for programmable biosensing

M. Jones, K. Afonin
University of North Carolina at Charlotte,
United States

Keywords: biosensor, sensor, quantum dot, DNA, RNA, fluorescence


We demonstrate the first biosensing strategy that relies on quantum dot (QD) fluorescence blinking to report the presence of a target molecule. Unlike other biosensors that utilize QDs, our method does not require the analyte to induce any fluorescence intensity or color changes, making it readily applicable to a wide range of target species. Instead, our approach relies on the understanding that blinking, a single particle phenomenon, is obscured when several QDs lie within the detection volume of a confocal microscope. If QDs are engineered to aggregate when they encounter a particular target molecule, the observation of quasi-continuous emission should indicate its presence. As proof of concept, we programmed DNAs to drive rapid isothermal assembly of QDs in the presence of a target strand (oncogene K-ras). The assemblies, confirmed by various gel techniques, contained multiple QDs and were readily distinguished from free QDs by the absence of blinking.