Temperature Stability of PAG-Doped-Graphene, Towards Commercial Production of Graphene Integrated Circuits

H. Al-Mumen and W. Li
Michigan State University, US

Keywords: graphene, transistor


In our previous work we found out a highly in air stable technique, defect-less, and relatively high electron mobility for n-doping graphene nanomesh using PAG (an element of SU-8 resist compound). This work demonstrated the temperature stability of the graphene field effect transistor (FET) which was doped by PAG. We studied the current transfer characteristics in a temperature range from ~ -15 ⁰C to + 100 ⁰C. We also studied the temperature dependence of Raman spectra of both pristine and n-doped graphene samples. All the spectra were excited using a visible (532 nm) laser with a relatively low laser power (0.53 mW) to avoid graphene heating by the excitation laser. The extracted negative temperature coefficients of G-mode for mono- and bi-layer pristine graphene were -0.042 cm-1/⁰C and -0.023 cm-1/⁰C, respectively. The temperature dependence of PAG doped n-type graphene FET was also investigated. The corresponded G-mode temperature coefficients of n-doped mono- and bi-layer were determined to be -0.0692 and -0.0024, respectively. The results indicate that the G-mode temperature coefficient of the n-doped mono-layer graphene had relatively a highest sensitivity to temperature which can be attributed to the inharmonic coupling of phonon modes.