A snapshot hyperspectral image sensor

M. Willems
imec, BE

Keywords: snapshot multispectral camera, multispectral CMOS sensor, monolithic integration, optical duplicator, tiled optical filters, snapshot acquisition


Although the potential of spectral imaging has been demonstrated in research environments, its adoption by industry has so far been limited due to the lack of high speed, low cost and compact spectral cameras. We have previously presented work to overcome this limitation by monolithically integrating optical interference filters on top of standard CMOS image sensors for high resolution pushbroom hyperspectral cameras. These cameras require a scanning of the scene and therefore introduce operator complexity due to the need for synchronization and alignment of the scanning to the camera. This typically leads to problems with motion blur, reduced SNR in high speed applications and detection latency and overall restricts the types of applications that can use this system. This paper introduces a novel snapshot multispectral imager concept based on optical filters monolithically integrated on top of a standard CMOS image sensor. By using monolithic integration for the dedicated, high quality spectral filters at its core, it enables the use of mass-produced fore-optics, reducing the total system cost. It overcomes the problems mentioned for scanning applications by snapshot acquisition, where an entire multispectral data cube is sensed at one discrete point in time.