Nanotech 2010

Application of Computational Chemistry to Nanotechnological Problems

S. Gusarov, A. Kovalenko
National Institute for Nanotechnology, CA

Keywords: computational chemistry, Quantum chemistry

Abstract:

Computer modeling and simulation are crucial in understanding and controlling structure-property relations by explaining experimental data and by revealing critical conceptual issues about the underlying mechanisms whose resolution requires excessive experimentation. There is a great increasing demand in methodological development due to a high complexity of real-life nanotechnology systems of interest in industrial research. In such cases, multiscale modeling is a promising approach combining different levels of description addressing the coupled phenomena at specific length and time scales. Multiscale modeling is particularly important in integrated computational materials engineering since it allows one to predict material properties or system behavior, based on the knowledge of atomistic structure and elementary processes. The most difficult part is modeling of the interaction between subsystems at different scales. We have developed several models of molecular electronics, heterogeneous nanocatalytic, and biological systems, which utilize coupled quantum-chemical, statistical-mechanical, and molecular-mechanical tools to efficiently predict their properties. In this presentation, we are giving our recent results for quantum transport in molecular electronics juctions, reactivity of zeolite nanocatalysts in heavy oil upgrading, and self-assembly and conformational stability of large biomolecular nanoarchitectures.
 
Program | Speaker Exhibitor | Press | Venue Register |
Symposia | Short Courses | News | Subscribe | Contact | Site Map
© Copyright 2009 TechConnect World. All Rights Reserved.